Computing in Picard groups of projective curves over finite fields
نویسنده
چکیده
We give algorithms for computing with divisors on projective curves over finite fields, and with their Jacobians, using the algorithmic representation of projective curves developed by Khuri-Makdisi. We show that various desirable operations can be performed efficiently in this setting: decomposing divisors into prime divisors; computing pull-backs and push-forwards of divisors under finite morphisms, and hence Picard and Albanese maps on Jacobians; generating uniformly random divisors and points on Jacobians; computing Frobenius maps; and finding a basis for the l-torsion of the Picard group for prime numbers l different from the characteristic of the base field.
منابع مشابه
Étale Cohomology, Lefschetz Theorems and Number of Points of Singular Varieties over Finite Fields
We prove a general inequality for estimating the number of points of arbitrary complete intersections over a finite field. This extends a result of Deligne for nonsingular complete intersections. For normal complete intersections, this inequality generalizes also the classical Lang-Weil inequality. Moreover, we prove the Lang-Weil inequality for affine as well as projective varieties with an ex...
متن کاملThe Picard group of the moduli stack of stable hyperelliptic curves
In a recent paper [1], Arsie and Vistoli have shown, as a byproduct of their study of moduli of cyclic covers of projective spaces, that the Picard group of the moduli stack Hg of smooth hyperelliptic curves of genus g ≥ 2 is finite cyclic, and that its order is 8g + 4 for odd g, and 4g + 2 for even g. In another recent paper [3], Gorchinskiy and Viviani have given a geometric construction of g...
متن کاملTHE GALOIS MODULE STRUCTURE OF l–ADIC REALIZATIONS OF PICARD 1–MOTIVES AND APPLICATIONS
Let Z −→ Z be a G–Galois cover of smooth, projective curves over an arbitrary algebraically closed field κ, and let S and T be G–equivariant, disjoint, finite, non-empty sets of closed points on Z, such that S contains the ramification locus of the cover. In this context, we prove that the l–adic realizations Tl(MS,T ) of the Picard 1–motive MS,T associated to the data (Z, κ,S,T ) are G–cohomol...
متن کاملK3 Surfaces with Interesting Groups of Automorphisms
By the fundamental result of I.I. Piatetsky-Shapiro and I.R. Shafarevich (1971), the automorphism group Aut(X) of a K3 surface X over C and its action on the Picard lattice SX are prescribed by the Picard lattice SX . We use this result and our method (1980) to show finiteness of the set of Picard lattices SX of rank ≥ 3 such that the automorphism group Aut(X) of the K3 surface X has a non-triv...
متن کاملNon-Abelian Zeta Functions For Function Fields
In this paper we initiate a geometrically oriented construction of non-abelian zeta functions for curves defined over finite fields. More precisely, we first introduce new yet genuine non-abelian zeta functions for curves defined over finite fields, by a ‘weighted count’ on rational points over the corresponding moduli spaces of semi-stable vector bundles using moduli interpretation of these po...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Math. Comput.
دوره 82 شماره
صفحات -
تاریخ انتشار 2013